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ABSTRACT OF THESIS

Scalable Feature Selection and Extraction with Applications in Kinase

Polypharmacology

In order to reduce the time associated with and the costs of drug discovery, machine

learning is being used to automate much of the work in this process. However the

size and complex nature of molecular data makes the application of machine learning

especially challenging. Much work must go into the process of engineering features

that are then used to train machine learning models, costing considerable amounts

of time and requiring the knowledge of domain experts to be most effective. The

purpose of this work is to demonstrate data driven approaches to perform the feature

selection and extraction steps in order to decrease the amount of expert knowledge

required to model interactions between proteins and drug molecules.
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Chapter 1

Introduction

1.1 Challenges in Drug Discovery

Drug Discovery is known to be an expensive and time-consuming process. On average,

it takes nearly a decade, with research and development costs exceeding $1.4 billion,

to develop a single successful candidate that is able to gain FDA approval [8, 15].

Not surprisingly, the level of investment in pharmaceutical r&d has increased in

order to deliver higher quality treatments as well as to bring down the cost of these

treatments to the consumer. However despite these increased levels of investment in

pharmaceutical r&d, the progress that has been made in achieving these goals leaves

much to be desired. In fact, the number of new FDA approved drugs has roughly

halved every 9 years since 1950 [34], suggesting that new approaches must be taken

to address this problem.

Drug Discovery is difficult for a number of reasons. For one, the number of

active, or binding, compounds are greatly outnumbered by inactive, or non-binding,

compounds. As the size of the molecular space is estimated to be between 1023 -

1060, the problem of “discovering” an active compound can be likened to finding a

needle in the haystack [29]. Secondly, many existing methods for identifying active

1
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binding compounds, such as molecular docking simulations, are not highly accurate

or able to reliably select active binding compounds, and restrict the throughput of a

drug discovery pipeline. Thirdly, gaining access to rich datasets is difficult as many

pharmaceutical companies do not publicly share much of the data they generate

from their own research, making progress in developing practical computational drug

discovery methods more difficult to achieve.

1.2 Improving Drug Discovery with Machine

Learning

In recent years, the availability of larger amounts of realistic data [27] as well as

advancements in machine learning and deep learning have given rise to the hope of

making substantial improvements in the throughput and efficiency in the drug discov-

ery process. The focus of this work is to demonstrate how these modern techniques

can be used in conjunction with a focus on efficiently scaling to the available com-

putational resources to address some of the aforementioned challenges. The problem

of interest in this work is the development of methods to predict the likelihood of a

drug-like molecule binding to a given target protein (figure 1.1). In Chapter 2, we

present a feature selection method that uses an ensemble of weak learners in parallel

to not only make the prediction for this task, but to also learn which features are

most informative in a data-driven manner. In Chapter 3, we present a method that

is able to learn feature representations directly from molecular structures as input,

removing the need for explicit feature extraction steps during preprocessing. Fur-

thermore, the method implements a distributed optimization procedure that again

scales to the amount of available compute power. In Chapter 4, future directions

for research are discussed that examine ways in which the molecular search space

can be traversed more efficiently to develop better drug-like molecule libraries. Two

2
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overarching themes throughout this work is the development of methods that are able

to leverage the available compute resources, however large or small, with the ability

to learn without human intervention, using the available data to perform the feature

selection and extraction steps.

Figure 1.1: An example of a drug molecule binding to a protein and the binding
pocket

3
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Chapter 2

Data-Driven Feature Selection in

Binding Affinity Models

2.1 Introduction

Protein kinases represent a large number of proteins in our body with essential func-

tions. Because of this, any disruption in normal kinase activity may lead to a disease

state. Additionally, due to high sequence and structural identity, selectively inhibiting

a kinase is difficult. This means a drug intended to target one kinase will likely also

target multiple other kinases. If these other kinases are normally expressed and not

implicated in the given disease it could lead to toxic off-target effects. Pharmaceuti-

cal companies test drug interactions with many different kinases in the beginning of

the drug discovery process. They do this as early as possible before lots of time and

money has gone into drug development [4]. Drugs failing late in the pharmaceutical

pipeline can be very costly, driving up the cost of drugs that do make it to market

when they have to recuperate the cost for the failed drugs. It can also be fatal when

they fail during clinical trial, because animal testing does not always give a good

indication of serious side-effects [32]. Therefore, our interest in accurate computa-

4
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tional models to study kinases is to develop better and safer cancer therapies, using

efficient computational predictions that reduce the time and cost of bringing a drug

to market.

We propose to use machine learning techniques to increase the accuracy of com-

putational drug discovery in order to make better predictions as early as possible. We

have seen in our own work that a small number of calculated features similar to ones

used in this study can identify active compounds for a given protein with greater than

99% accuracy. These same drug features have been used in machine learning models

in combination with docking scores to rescore interactions with one candidate drug

to multiple proteins [14]. The individual components of a molecular docking scoring

function can be used as features in a machine learning model to greatly improve the

accuracy of identifying active compounds in models specific for one protein [19]. From

a different perspective, protein features have been used in machine learning models

to predict the druggability of a protein [18]. The goal of this work is to combine all

these components in one model that would vastly improve the accuracy of predicting

the effects of new proteins and classes of drugs. The specific goal of this chapter is

to present machine learning models that can accurately predict the drug interaction

for a class of functionally related proteins (kinases), an important class of proteins

for drug discovery as already stated.

2.2 Methods

Our goal is to estimate the probability that a kinase-drug pair is active (binding) or

decoy (not binding), a binary classification task. We propose to use a random forest

classification method to address this task. A key focus of our effort is in investigating

which features are most informative for this task. To support this effort, we created a

large dataset of kinase-drug pairs and computed a wide variety of different features.

5
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The data used in this study comes from the kinase subset of the Directory of

Useful Decoys - enhanced (DUD-e) [27]. It is important to note that the ratio of

active to decoy compounds in DUD-e is approximately 1:50.

Data Collection

• Protein Descriptors The human canonical sequences were collected for each

protein from UniProt [3]. The sequences were submitted to three different web-

servers to collect features: ExPasy [11], Porter, PaleAle 4.0 [24], and PROFEAT

Protein Feature Server [39]. These three tools were used to ensure we collect

all features used in the DrugMiner [18] project. Additional features that these

tools calculate are also collected. ExPasy calculates many features, such as

the length, weight, half-life, isoelectric point, extinction coefficient assuming

all pairs of Cys residues form cysteines, extinction coefficient assuming all Cys

residues are reduced, instability index, aliphatic index, Grand average of hy-

dropathicity (GRAVY), and the frequency of single amino acids, amino acid

types (tiny, small, aliphatic, nonpolar, aromatic, polar, charged, basic, acidic,

hydrophobic, hydrophilic, positive, and negative), and atom types. Porter cal-

culates the predicted secondary structure based on the amino acid sequence and

classifies each amino acid as helical, beta strand, or coil. PaleAle calculates the

predicted relative solvent accessibility based on the amino acid sequence and

classifies each amino acid as completely buried (0-4% exposed), partly buried (4-

25% exposed), partly exposed (25-50% exposed), or completely exposed (50+%

exposed). PROFEAT calculates features using many different tools including

features based on the dipeptide composition of the protein sequence.

• Pocket Descriptors Inner point features are collected using PRANK [20],

software used to predict and rank binding sites. PRANK first calculates feature

vectors for heavy solvent exposed atoms (AFVs), including residue and atomic

6
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level features. Then feature vectors are calculated for inner pocket points (IFVs)

by summing all AFVs within an 8 Å radius using a distance weight function and

then appending features specific to the inner pocket point, such as the number

of H-bond donors and acceptors in its local neighborhood. The IFV from the

inner pocket point with the closest distance to the center of the docking box

calculated for molecular docking is used.

• Drug Descriptors Drug features are calculated using the Dragon Software

[36]. Dragon can calculate over 5 thousand molecular descriptors, including

the simplest atom types, functional groups and fragment counts, topological

and geometrical descriptors, and three-dimensional descriptors. It also includes

several property estimations like logP and drug-like alerts like Lipinski’s alert.

In this study 3-dimensional descriptors are left out because the input structures

for Dragon are the predocking structures and not those predicted by molecular

docking.

• Binding Descriptors The receptor files from DUD-e that were optimized

for docking are used in this study. The dimension and center of the docking

boxes are calculated using a VMD [16] tcl script to draw a box around the

co-crystallized ligand included in the DUD-e dataset and it is extended by 5 Å

in each direction. Compounds are prepared for docking using modified ADT

scripts and a wrapper script for automation. Docking was performed using

VinaMPI [10], which allows the distribution of a large number of Autodock

Vina [38] docking jobs on MPI-enabled high-performance computers. The re-

sults of the docking jobs were submitted to Autodock Vina using the “–score-

only” option to collect the individual terms calculated in the scoring function.

This includes terms for gauss1, gauss2, repulsion, hydrophobic, and hydrogen

interactions. The values for the first model and averages of each term for all

7
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models are kept.

Feature Selection & Classification

The only form of preprocessing we performed was eliminating features with too many

missing values. Specifically, we eliminated 21 features computed by the Dragon soft-

ware package that had more than 5% missing values. The eliminated features had

between 23.1%-99.9% missingness. There were 167 additional Dragon features that

had less than 5% missing values and we imputed these values by using the column

average. The final full dataset contains 5,410 features and 361,786 examples. After

initial preprocessing, we train a classifier for various subsets of features and perform

feature selection.

Random forests [5] are known to produce robust classifiers that are less prone to

overfitting than ordinary decision trees. For a brief review, random forests contain a

number of decision trees, a parameter that is chosen prior to training, each of which

take random samples from the training data and random subsets of features to grow

decision trees that are often limited in depth to create “weak” learners that underfit

the testing data. By combining the “weak” learners that specialize in different regions

of the feature space, random forests are able to learn complex functions that are robust

to label imbalance or overfitting, two properties that are of great importance in our

classification problem. The decision trees that make up a random forest compute

orthogonal splits in feature space that attempt to maximize separation between the

positive and negative classes minimize what is known as the GINI Impurity. From

training a random forest, one can compute feature importances by measuring the

average after-split impurity of the feature across all trees in the forest.

The feature selection method we use is similar to those used by [23] and [2] who

also apply iterative feature selection method for classification to learn important sets

of features. In our feature selection method, we input an initial set of features F for

8
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which we use to train a random forest classifier. The input data, after preprocessing,

is partitioned into training and testing sets using an 80/20 stratified split, with the

test set containing the same proportion of positives to negatives as the training set.

We fix several parameters of the random forest classifier by using an out-of-bag score

to protect against overfitting, balanced class weighting when computing impurities

for the forests which inversely adjust the weights according to class frequency to get

measures of the F1-score that better reflect the random forest’s performance in cor-

rectly predicting the active class, bootstrap sampling which allows training examples

to be used in the building of more than one tree, and the GINI impurity criterion for

which to compute the split quality when building the tree. We then perform model

selection by sampling from distributions of hyperparameters, shown to be as effec-

tive as exhaustive parameter grid searching by [21], for the random forest including

the number of trees to include (30-100 trees) in the forest, the minimum number of

samples required to create a leaf node (1-100 samples), and the maximum number of

features f ∈ F to sample from F for each decision tree (
√
|F | and log2(|F |)). Given

the distributions over hyperparameter values, we sample 100 possible settings of hy-

perparameters each iteration, evaluating the performance of each candidate model

using k-fold cross validation, with k = 3. We define the best model trained on the

feature set to be the one which maximizes the weighted F1-score on the testing data.

We then compute the mean importance, more specifically the mean decrease in im-

purity ( 1
|F |), for the set of features F , and retain all features that have above mean

importance. This strategy is employed in order to remove features with near 0 im-

portance that contribute negligible information to the classification model and do not

have a significant affect on performance. After computing the set of features to keep,

F becomes the set of features identified as relevant, reducing the dimensionality of

the input data. The iteration process continues until either a maximum number of

iterations have completed or if there are no remaining features.

9
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Algorithm 1 Feature Selection

1: procedure Selection Forest(F )
2: while F 6= ∅ and step < max steps do
3: X, y = load data(features = features to keep)
4: Xtrain, Xtest, ytrain, ytest = train test split(X, y)
5: best forest = RandomizedGridSearch(RandomForest,

Xtrain, ytrain).best estimator
6: feature importances = best forest.importances
7: features to keep = feature importances > 1

|feature importances|
8: F = features to keep

We use principal component analysis (PCA) to visualize the various feature rep-

resentations. For our purpose of visualization, we reduce the dimensionality to 2

principal components.

Test set

We used a fixed seed when creating the test set in order to make sure all models are

tested with the same data. The test and training sets are stratified by kinase, keeping

the same proportion of active and decoy compounds for each.

Table 2.1 gives the representation of each kinase in the test set. The whole dataset

‘total’ column gives the total number of active and decoy compounds for the given

kinase in the whole dataset. The whole dataset ‘ratio 0:1’ column gives the ratio of

negative to positive class for the entire given kinase’s dataset. The remaining columns

are particular to the test set. The ‘0’ column gives the number of decoys (negative

class) in the test set. The ‘1’ column gives the number of actives (positive class) in

the test set. The ‘percent 0’ column gives the percentage of the given kinase’s dataset

that is in the negative class test set. The ‘percent 1’ column gives the percentage of

the given kinase’s dataset that is in the positive class test set. The ‘total %’ column

gives the percentage of the given kinase’s dataset that is in the test set. The ‘ratio

0:1’ gives the ratio of negative to positive test cases for the given kinase in the test

set.

10
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Table 2.1: Representation of each kinase in the test set

whole dataset test dataset
kinase total ratio 0:1 0 1 percent 0 percent 1 total % ratio 0:1

abl1 11,180 37 2,105 60 0.188 0.005 0.194 35
akt1 16,999 39 3,298 73 0.194 0.004 0.198 45
akt2 7,142 37 1,462 34 0.205 0.005 0.209 43
braf 10,349 40 2,036 46 0.197 0.004 0.201 44
cdk2 29,126 35 5,604 158 0.192 0.005 0.198 35
csf1r 12,720 43 2,563 54 0.201 0.004 0.206 47
egfr 36,274 43 6,936 158 0.191 0.004 0.196 44
fak1 5,516 47 1,085 14 0.197 0.003 0.199 78
fgfr1 736 2 183 116 0.249 0.158 0.406 2
igf1r 9,633 42 1,958 42 0.203 0.004 0.208 47
jak2 6,743 43 1,343 32 0.199 0.005 0.204 42
kit 10,861 42 2,144 52 0.197 0.005 0.202 41

kpcb 9,092 36 1,732 42 0.190 0.005 0.195 41
lck 28,539 41 5,569 136 0.195 0.005 0.200 41

mapk2 6,450 30 1,240 40 0.192 0.006 0.198 31
met 11,677 47 2,278 47 0.195 0.004 0.199 48

mk01 4,767 33 889 31 0.186 0.007 0.193 29
mk10 6,900 36 1,358 50 0.197 0.007 0.204 27
mk14 37,347 40 7,265 184 0.195 0.005 0.199 39

mp2k1 8,483 34 1,693 41 0.200 0.005 0.204 41
plk1 7,034 44 1,402 32 0.199 0.005 0.204 44

rock1 6,580 31 1,306 41 0.198 0.006 0.205 32
src 35,790 42 6,980 167 0.195 0.005 0.200 42

tgfr1 8,958 31 1,704 63 0.190 0.007 0.197 27
vgfr2 25,900 41 5,119 123 0.198 0.005 0.202 42
wee1 6,371 46 1,245 25 0.195 0.004 0.199 50

Evaluation

In this study, we compare the performance of machine learning models using different

feature sets and also compare the performance to the computed docking score. Dock-

ing scores are typically used for ranking compounds from most likely to least likely

to bind and there is no standard that defines an exact docking score that determines

a binding prediction. In order to compare binding predictions from the docking score

alone to the machine learning models, the maximum Youden’s index (or J value) is

calculated for each model. The best J value is calculated from the docking score

receiver operator characteristic (ROC) curve and used as a cut-off to define true pos-

11
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itive (TP), true negative (TN), false positive (FP), and false negative (FN) values for

the docking results. The different feature sets are described below and we compare

6 models using the feature sets given in Table 2.2. All the metric presented in the

Results are defined in Table 2.3.

Table 2.2: Evaluation Models

Model Feature Set Model Feature Set Model Feature Set
1 FS1 3 FS1 + FS3 5 FS1 + FS2 + FS3 + FS4
2 FS4 4 FS1 + FS3 + FS4 6 all features

Table 2.3: Metrics used in this study

Name Definition Formula

Youden’s index
Performance of dichotomous test. The value 1

indicates a perfect test and -1 indicates a useless test.
TP

TP+FN
+ TN

TN+FP
+ 1

F1 Harmonic mean of precision and recall 2TP
2TP+FP+FN

Precision Positive predictive value TP
TP+FP

Recall True positive rate TP
TP+FN

Table 2.4: Youden’s Index.

Kinase Youden’s Index Best docking score Kinase Youden’s Index Best docking score

abl1 0.35 -9.1 lck 0.29 -8.9
akt1 0.02 -8 mapk2 0.45 -8
akt2 0.22 -8.5 met 0.51 -8.9
braf 0.53 -9.6 mk01 0.6 -9.1
cdk2 0.33 -8.2 mk10 0.4 -8.7
csf1r 0.23 -8.9 mk14 0.28 -8.5
egfr 0.15 -8.7 mp2k1 0.13 -7.8
fak1 0.52 -8.4 plk1 0.2 -8.6
fgfr1 0.01 -8 rock1 0.4 -7.7
igf1r 0.46 -8.4 src 0.17 -8.1
jak2 0.37 -9.3 tgfr1 0.56 -9.6
kit 0.24 -8.5 vgfr2 0.36 -9

kpcb 0.33 -8.5 wee1 0.76 -10

Overall 0.23 -8.6

• Feature Set 1 (FS1): This set is selected using the entire dataset and using

the active or decoy binary labels. This is to collect the most important features

for making the classification in which we are interested (i.e. active vs decoy).
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• Feature Set 2 (FS2): This set is selected using only protein and pocket

features and using the kinase as a label. We do this to ensure we have protein

features to test whether or not they help identify which kinase compounds bind

to and not just identify kinase inhibitors in general.

• Feature Set 3 (FS3): This set is selected using the drug features with the

kinase as a label. This is also used to help with kinase selectivity.

• Feature Set 4 (FS4): This set contains all docking features, which includes

terms for gauss1, gauss2, repulsion, hydrophobic, and hydrogen interactions for

the first docked model produced using molecular docking and an average over

all models (the default value of 9 models was kept when running Vina). There

is also a feature for the final docking score.

2.3 Results

Youden’s Index for Docking Scores

The maximum Youden’s index (or J value) is calculated and used to define TP, FP,

TN, and FN values using docking scores. The best J values and docking score cut-off

for each kinase and on the dataset overall all are given in Table 2.4.

PCA of Feature Sets

We performed a PCA of each Feature Set (FS) described in the Methods section.

Figures 2.1 and 2.2 plot the first two components for FS1-FS4. FS1 contains 776

features all which are drug features. FS2 contains three protein features that are

most important in determining the kinase. These are [G3.1.1.1.19], [G4.1.23.3],

[G4.3.17.2] and come from the PROFEAT webserver [39]. These correspond to an

autocorrelation descriptors based on the distribution of amino acid types along the

13
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(a) Feature Set 1 (b) Feature Set 4

Figure 2.1: PCA of FS1 and FS4

(a) Feature Set 2 (b) Feature Set 3

Figure 2.2: PCA of FS2 and FS3

protein sequence, a protein-ligand binding site propensity descriptor, and a protein-

DNA interface propensity descriptor, respectively. FS3 gives us 191 features which

has an overlap of 134 features with FS1, so this set has 57 new features in it. FS4

has 11 features.

Evaluation of Models Containing Different Feature Sets

Metrics (which are defined in Table 2.3) for each model are given in Table 2.5 and

a comparison to the docking metrics obtained using the test set is also given. All
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models do very well at identifying the decoy compounds or negative class. However,

given the ratio of decoys to actives, a model could always predict decoy and give good

results. Therefore, our focus is on the positive class metrics. Interestingly Model 2

which is all docking features and would hopefully be highly predictive, has the worst

performance in all metrics. Model 2 still performs better than docking alone by F1-

score. Model 5 gives the best F1-score which is a key metric as it is a balance between

the precision and recall. It also gives the best recall of 0.92. Additionally, this is the

model that includes protein features and we are interested in the added benefit of

including them.

In Table 2.6 we further analyze the per kinase performance. All metrics here are

using Model 5 and again the metrics based on docking scores alone are also given.

The “Per kinase” columns are metrics on each individual kinase from the analysis

given in Table 2.5. The “Leave-one-out” columns are additional models using the

same feature sets as Model 5, but in which one kinase is left out for testing while all

the other kinases are in the training set.

2.4 Discussion

We can see from the PCA (figures 2.1, 2.2) that FS1 (drug features selected based

on active or decoy classification) has a fairly good separation of the two classes and

alone gives good predictions with an F1-score of 0.87. FS4 (docking features) has

some separation between the classes but also a sizable overlap and only an F1-score

of 0.28 (Model 2) for classifying the compounds. FS3 (drug features selected based on

kinase classification) do not do a great job at kinase classification and do not improve

the model over using just FS1 (Model 3 vs Model 1). Only three protein features

were selected for their ability to classify the kinase (FS2) and this model, Model 5,

gives the best F1 score.
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Even though the drug features are by far the most informative features in these

models, they cannot account for kinase selectivity. When including features that are

informative at classifying the kinase, we had a slight increase in F1 score. Even though

kinase inhibitors are promiscuous and kinases have a high sequence and structural

similarity, this provides hope that protein features can be informative in universal

(multi-protein) models for drug binding.

We can see that the per kinase performance is much better when each kinase

is represented in the training set by comparing the “Per kinase” and “Leave-one-

out” columns in Table 2.6. However, many kinases still perform very well in the

“leave-one-out” analysis. We believe that as we add more kinases to the model the

“leave-one-out” analysis will improve. Recent results using a diverse set of proteins

also show promise to improve models.

To exemplify the usefulness of our method, we have identified a compound that

would never be identified in a docking virtual screen as an active compound (re-

ceiving a score of +95.19, when the most negative scores predict binding), that has

been saved using this machine learning model. An example of such a compound

is CHEMBL448926, an ackt1 active compound. This compound is an actual ackt1

inhibitor patented by Merck and Co Inc. (Patent ID US7544677) and directed to

chemotherapeutic compositions. The reason this compound may be lost during dock-

ing is it a potent allosteric inhibitor [35].

Docking is often used as a tool to enrich a subset of data and therefore early

enrichment is a common important metric. For example, if a large virtual drug set

has 2% unknown active compounds in it then hopefully the top subset of scored drugs

by docking will have maybe 10% active compounds in it. This would allow researchers

to select a smaller set of drugs for experimental testing and have a greater success

rate than randomly selecting a subset for testing. We can see here that the precision

is always low for docking, therefore to recover the same amount of active compounds
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using docking you would always have a much higher false positive rate making the

number of compounds needed for experimental validation to be much higher for the

same success rate.

With the test case presented here evaluated with Model 5, which includes protein

features and gives the best F1 score, 97% of the test data is classified as non-binding.

Therefore, 97% of the data can immediately be discarded and you would lose less

than 10% of the binding compounds at this prediction stage. Experimentally testing

the predicted active compounds would give an 83% success rate at identifying active

compounds. Testing the same number of compounds based on docking score alone

would have less than a 27% success rate. Part of the problem here is that docking

scores are not a good indicator of binding when looking at multiple proteins. The

range of docking scores varies per protein. This demonstrates a huge advantage to

our machine learning approach for a multi-protein model.
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Table 2.5: Comparison of performance for both classes on the testing set.

Model Class Precision Recall F1-Score Class Precision Recall F1-Score

1 0 1.00 1.00 1.00 1 0.83 0.92 0.87
2 0 0.98 0.98 0.98 1 0.26 0.30 0.28
3 0 1.00 1.00 1.00 1 0.83 0.92 0.87
4 0 1.00 1.00 1.00 1 0.83 0.91 0.87
5 0 1.00 1.00 1.00 1 0.84 0.92 0.88
6 0 1.00 1.00 1.00 1 0.85 0.89 0.87

Docking 0 0.99 0.58 0.73 1 0.04 0.67 0.07

Table 2.6: Evaluation metrics per kinase for the positive class

Per Kinase Leave-one-out Docking
Kinase Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

abl1 0.92 0.95 0.93 0.86 0.95 0.9 0.06 0.72 0.11
akt1 0.86 0.96 0.91 0.84 0.81 0.82 0.03 0.29 0.05
akt2 0.94 0.94 0.94 0.83 0.8 0.81 0.04 0.59 0.07
braf 0.85 0.98 0.91 0.76 0.85 0.8 0.06 0.80 0.11
cdk2 0.85 0.77 0.81 0.6 0.31 0.41 0.04 0.78 0.08
csf1r 0.82 0.83 0.83 0.62 0.59 0.6 0.03 0.63 0.06
egfr 0.85 0.91 0.88 0.76 0.75 0.75 0.03 0.81 0.05
fak1 0.75 0.86 0.8 0.8 0.77 0.78 0.03 0.86 0.06
igf1r 0.93 1.00 0.97 0.9 0.92 0.91 0.05 0.86 0.09
jak2 0.97 0.94 0.95 0.87 0.77 0.82 0.06 0.5 0.10
kit 0.83 0.92 0.87 0.74 0.88 0.81 0.05 0.58 0.08

kpcb 0.70 0.93 0.80 0.45 0.32 0.37 0.04 0.86 0.08
lck 0.94 0.93 0.94 0.8 0.83 0.82 0.05 0.49 0.09

mapk2 0.93 0.97 0.95 0.72 0.37 0.49 0.06 0.65 0.10
met 0.87 0.96 0.91 0.75 0.77 0.76 0.05 0.81 0.09

mk01 0.91 0.97 0.94 0.78 0.69 0.73 0.16 0.71 0.26
mk10 0.88 0.86 0.87 0.67 0.51 0.58 0.06 0.82 0.11
mk14 0.90 0.85 0.88 0.76 0.5 0.6 0.05 0.56 0.09

mp2k1 0.80 0.95 0.87 0.59 0.48 0.53 0.03 0.93 0.05
plk1 0.82 0.84 0.83 0.73 0.5 0.59 0.03 0.91 0.06

rock1 0.88 0.85 0.86 0.63 0.32 0.42 0.05 0.88 0.10
src 0.93 0.97 0.95 0.86 0.87 0.86 0.03 0.88 0.06

tgfr1 0.94 0.98 0.96 0.89 0.83 0.86 0.09 0.84 0.17
vgfr2 0.93 0.90 0.92 0.8 0.79 0.8 0.05 0.65 0.10
wee1 0.93 1.00 0.96 0.75 0.58 0.65 0.14 0.8 0.24
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Limitations

While our results highlight the potential of our approach, there are several limitations

of our evaluation that warrant further investigation. The main limitation is that we do

not know whether a compound that is active for one kinase is not active for another.

There is some overlap between the 26 different active sets but it is not much. Since

selectively inhibiting a kinase is difficult it should be experimentally validated before

marking a compound that is active for one kinase as not for another one. It is also

difficult to tell if a given active for one kinase is in the decoy set for another kinase

because the active and decoy compounds in DUD-e come from different databases,

CHEMBL [12] and ZINC [17], respectively. Having an all-to-all set of connections

where we know whether every drug in our dataset binds or does not bind to every

protein in our dataset may uncover important features for this selectivity. Also, due

to concerns with the fgfr1 dataset (i.e. the proportion of actives to decoys does not

match what is expected from DUD-e), we have excluded fgfr1 compounds from our

test set.

Future Work

Some potential future directions include (1) evaluating different ways of using the

pocket features that may correlate better with predictions, (2) incorporating infor-

mation on multiple possible binding sites in the model, and (3) incorporating diverse

proteins in the dataset.

2.5 Conclusion

We successfully created a model of several kinases that makes good binding predic-

tions. We found that the features we collected greatly increased binding predictions

when used in a machine learning model over docking scores alone. A model using
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features selected based on which kinase they belong to gave the best F1 score which

balances precision and recall. We calculate a nearly 60% increase in success rate for

discovering active compounds over docking.

2.6 Acknowledgements

This research was supported by the Cancer Research Informatics Shared Resource

Facility of the University of Kentucky Markey Cancer Center (P30CA177558). This

research used computational resources at the University of Kentuckys Center for Com-

putational Sciences and the National Energy Research Scientific Computing Center,

a DOE Office of Science User Facility supported by the Office of Science of the U.S.

Department of Energy under Contract No. DE-AC02-05CH11231. This work was

supported by the National Institutes of Health(NIH) National Center for Advancing

Translational Science grant KL2TR000116 and1KL2TR001996-01.This work was sup-

ported by the Director, Office of Science, Office of Advanced Scientific Computing Re-

search, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

We would like to acknowledge the assistance of Radoslav Krivak and David Hoksza

in using the p2rank software.

Copyright c© Derek Jones, 2018.

20



www.manaraa.com

Chapter 3

Distributed Learning of Molecular

Feature Representations

3.1 Introduction

It is common for modern screening pipeline methods in computational drug discovery

to require the use of feature extraction steps to compute meaningful vector represen-

tations of drug molecules that can later be used as inputs in predictive models for

protein-drug interactions. This may be undesirable in at least two ways. First, these

features are gathered independently of the end task, meaning that they are not able

to be directly optimized for the task of interest in a manner that understands the

relationships between the available data and the task of interest. Secondly, these

extraction methods require some degree of domain expertise in determining which

features are appropriate for the task and further, which parameters should be used

to compute these features.

In this chapter we demonstrate how a deep learning methodology can be used to

learn feature representations of drug-like molecules in a data-driven manner that can

alleviate much of the burden in the data preparation. We show how the learned fea-
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ture representations are able to provide accurate predictions of molecular properties

for the drug molecules in our dataset as well as discriminate between protein-kinase

inhibitors.

3.2 Related Work

One commonly used method for representing molecular structures is by encoding

them using the smiles (simplified molecular-input line-entry system) format. A smiles

string encodes the atoms and bonds, as well as the types of the bonds, of a molecule.

A given smiles representation uniquely identifies a molecule, and for a given molecule

their may exist a number of valid permutations of these unique identifiers. As this

format is a string representation of a molecule, it is necessary to compute a vector

representation of a molecules smiles representation for use as input to a machine

learning system.

Drug molecules can also be understood as graph structured data. Each node in

the molecular graph G represents an atom, and each edge euv ∈ G can be thought of

as a bond between two atoms u and v, with the edge euv labeled by the type of bond

between the atoms u, v. Leveraging this graph representation Gm of a molecule m,

one can extract a vector representation describing Gm in some context.

We briefly review some applications in which these representations have been used

in machine learning, highlighting some of their limitations and thus motivating the

need for data driven modeling to be used in practice.

Molecular Descriptors

Molecular descriptors are the output of some computational process “which trans-

forms chemical information encoded within a symbolic representation of a molecule

into a useful number. . . ” [37]. Several solutions exist for the calculation of molecular
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descriptors that can be used as input to machine learning models for tasks to predict

molecular properties and activities [6, 26, 36]. A popular option is the Dragon soft-

ware suite which is able to calculate 5,270 unique molecular descriptors that include

features such as simplest atom types, functional groups and fragment counts, topolog-

ical and geometrical descriptors, three-dimensional descriptors, as well as estimates of

various properties relevant to computational drug discovery such as solubility (logP)

and drug-like indices. Determining which of these features may be appropriate for a

task either requires domain expertise, trial and error, or the simplest solution in using

all of the available features and using some feature selection process to filter out those

that are less informative according to some threshold. While using a feature selec-

tion process does help to remove the burden of domain expertise, a disadvantage to

this approach is that unnecessary dimensionality may be introduced, restricting the

possible approaches one may use to learn a task in a timely manner as a consequence

of the curse of dimensionality.

Numerous studies have been performed in the context of drug-protein binding

interactions that have made use of molecular descriptors as feature representations of

molecules [7, 14, 18, 19, 22, 30]. In addition to traditional machine learning methods,

Deep Neural Networks (DNNs) trained on molecular descriptors as feature represen-

tations have been successfully applied to problems in drug discovery. In the work by

[7], Multi-Task (DNNs) were successfully applied to predict the targets of multiple

PubChem assays using 3764 molecular descriptors gathered from the Dragon soft-

ware suite. The authors compared their methods to several benchmarking methods,

including a single-task DNN, and show that in the majority of cases their method

exceeds the baseline performance in terms of the pearson correlation coefficient (i.e.

R2). In further work on applying DNNs to drug discovery, a competition launched

by Merck & Co. on the Kaggle data science platform was used to generate fur-

ther interest in applying modern machine learning techniques to the prediction of
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molecular properties relevant to drug discovery. The data provided in the Merck &

Co. molecular activity challenge consisted of molecular descriptors along with a set

of activities as labels for each distinct molecule. The winning team subsequently

published their results with the assistance of Merck & Co. in which they detail a

crucial component behind their successful ensemble learning method, a DNN [22],

showing that the DNN in most cases is able to outperform the RF across a number

of hyperparameter settings on each of 15 selected datasets. While the results of early

applications of DNNs were impressive in their own right given the time context, the

use of molecular descriptors imposes a prior belief that all relevant or task-specific

information is contained within these sets of descriptors, an obvious limitation that

should be addressed in future methodologies.

Molecular Fingerprinting

Rather than explicitly computing features for a molecule such as a drug-like prop-

erty or index, it is possible to instead compute a vector representation that identifies

the molecule in a vector space with some intrinsic meaning. Algorithms for do-

ing this calculation are known as molecular fingerprinting methods. Examples of

these include morgan fingerprints [25] and extended connectivity circular fingerprints

(ECFP) [33]. These algorithms compute a unique binary valued vector that identifies

a given molecule based upon the atoms that it contains and their features. The state

of the art fingerprinting algorithm, ECFP, computes a representation that can be used

to understand properties such as similarity between molecules which can be helpful

in predicting specific properties of a possibly unknown molecule as well as possible

identification of active binding molecules to a target protein. However, in terms of

extracting a representation for a machine learning task, a limitation of these methods

is that they are computed independently of the task of interest, potentially limiting

the performance of machine learning models trained using these representations.
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Neural Fingerprinting

Recently, a deep learning “neural” fingerprinting method was proposed in the work

by [9]. The authors alter the ECFP algorithm by introducing a differentiable function

to compute molecular fingerprints, allowing the method to be optimized for specific

tasks, an advantage over previous methods. Subsequently, a number of variations

of this type of network using graph convolutions have been introduced by various

groups. The work by [13] summarizes each of these techniques, and provides a unified

definition of these methods named Message-Passing Neural Networks, or MPNNs,

which can be roughly defined in two steps:

• Message-Passing Phase

mt+1
v =

∑
w∈N(v)

Mt(h
t
v, h

t
w, evw) (3.1)

ht+1
v = Ut(h

t
v,m

t+1
v ) (3.2)

where Mt is a specified message passing function, Ut is a specified update func-

tion, ht
v is the hidden state and mt

v is the message received by node v at time t.

This step is computed for all nodes v ∈ G and is repeated for each node a spec-

ified number of iterations given as T . The result is the flow of local information

from each node v ∈ G across the molecular graph.

• Readout Phase

ŷ = R({hT
v | v ∈ G}) (3.3)

where R is a specified “readout” function of the hidden node states at the end

of message passing at time T and ŷ is the predicted target value of the network.

MPNNs are powerful in that they are able to learn on graphs that vary in topol-

ogy, making them flexible for applications in which the inputs express this variety.
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While the hidden states ht
v can be updated simultaneously for all nodes in a graph

Gm at time t, the message passing phases are sequential operations in that ht+1
v is

not able to be computed until the previous value ht
v is known, so one must iterate T

times to complete the message passing. When learning on large amounts of training

data, this may become a troublesome property and so we explore a distributed opti-

mization algorithm, HOGWILD! [31], as a possible method to address this concern

in a practical application.

3.3 Methods

Dataset

The dataset used in the subsequent experiments is derived from the Directory of Use-

ful Decoys-Extended (i.e. DUD-E), a molecular docking database. The molecules in

this study are identified as active or decoy binding for the kinase subset of DUD-E

and we use their smiles representations during preprocessing. From the smiles rep-

resentations, the deepchem python library is used to construct the molecular graphs

using the atom and bond feature extraction code, which encode various properties of

the atoms in a given molecule as well as the bond types [1]. The atom features are

used as the initial value of ht=0
v of size 70 and the bond features are used as the value

of evw of size 6. The dataset was split into 3 partitions that are consistent across each

experiment. The training and testing sets were generated using an 80/20 stratified

split that keeps the number of positives consistent across each set. The training set

was then further divided into a training and hold-out validation set using a 90/10

split, again using a similar stratified scheme, keeping the proportion of positives con-

sistent across each split. In total there are 361,045 examples in the dataset, 259,952

of these in the training split, 28,884 in the validation split, and 72,209 in the testing

split.
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Table 3.1: Description of dataset partitioning

partition # examples % active

Train 259,952 2.495
Validation 28,884 2.662

Test 72,209 2.504

Network Details

Our implementation specifies the message passing phase as the result of two functions

Mt and Ut, which compute the updated message vector mt+1
v and the update hidden

state vector ht+1
v . mt+1

v is specified as the following:

mt+1
v = Mt(h

t
v, h

t
w, evw) = ht

v ‖ ht
w ‖ evw (3.4)

where ‖ denotes the concatenation operation. Furthermore, we specify ht+1
v as:

ht+1
v = Ut(h

t
v,m

t+1
v ) = ReLU(mt+1

v ) (3.5)

where ReLU(x) = max(0, x). Finally, we specify the readout function R as:

R({hT
v | v ∈ G}) =

∑
v∈G

ReLU(hT
v ‖ hT

v ) (3.6)

using consistent definitions for the ReLU non-linearity and concatenation. In the case

of classification, the output of the network ŷ is defined as:

ŷ = softmax(O(R({hT
v | v ∈ G}))) (3.7)

and in the case of regression we define the output ŷ as:

ŷ = O(R({hT
v | v ∈ G})) (3.8)

where O is a linear transformation. We explore a number of configurations for the

network parameters, using a randomized hyperparameter search to efficiently explore

the hypothesis space. All code implemented using the PyTorch deep learning frame-

work and deepchem molecular machine learning library [28], [1].
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Network Training

To reduce the time for the MPNN to fit our dataset, we use the HOGWILD! dis-

tributed stochastic gradient descent (SGD) optimization algorithm [31]. HOGWILD!

is an asynchronous implementation of SGD that trains a model in a distributed fash-

ion by using multiple processes to update the parameters of a single shared copy

of the model. The updates are lock-free, in that the processes are free to update

the shared copy after computing the gradient for their respective batches and that

there is no central authority that must approve of the updates. This alleviates issues

that may come with a synchronous algorithm, whose overall computation time per

mini-batch would depend on the computation time of the slowest worker. While it is

possible that the processes overwrite each others work during the training of the net-

work, it has been shown under the assumption that updates to the shared parameters

are sparse, that one can achieve a near linear increase in convergence. We provide a

visualization of this optimization algorithm in 3.1.

To give an overview of the HOGWILD! implementation, we initialize n training

processes where each process gets a copy of the data, a reference to the shared memory

model, and a unique random seed. Then each process begins its own SGD, treating

the shared memory parameters as their own. The processes make updates and get

the new values of the model parameters asynchronously. Thus after the initial copy,

it is possible that the individual training processes are operating with different, but

related, copies of the model parameters, introducing noise to the network training

which can be understood as a form of regularization.
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Figure 3.1: Visualization of the Hogwild! training algorithm

3.4 Results

Experiment 1: Predicting Molecular Properties

We first evaluate our method by predicting molecular properties that have been com-

puted by the Dragon software suite [36]. The goal of this experiment was to under-

stand how well the method could learn these properties in order to determine whether

more complicated tasks would even be possible. To evaluate these results, we use the

pearson correlation coefficient, or R2 metric, which measures how well a predictive

model’s output correlates to the true target output.

Each network was trained for a separate task using a single training process with

batch size of 300, using the ADAM optimizer with learning rate of 1e − 3, readout

function R which takes as input a vector of size 128 and computes an output vector of

size 140, and output layer O which takes as input a vector of size 128 and computes

an output scalar. The target values for each task were standardized using the mean

and standard deviation of the given feature column in the training set. The results

on each of the separate task are measured given in figure 3.2.
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Figure 3.2: R2 values for molecular property predictions on testing set

Experiment 2: Classification of Kinase Inhibitors

This task attempts to determine whether or not a given drug molecule inhibits a

protein kinase target, a binary classification task. This classification is similar to

what was done in the previous chapter where we use only drug features in our model

1 to identify the kinase inhibitors. We evaluate the performance of this classification

using the precision, recall, and f1-score for each class to understand how well the

model is able to correctly predict the active compounds in our dataset.

We use a random hyperparameter search to choose the number of training pro-

cesses, the size of the output vector computed by readout function R, the size of

the input vector for the output layer O, the number of message passing steps T , the

batch size, and learning rate to use for training. We sample 100 configurations based

upon this, then evaluate each model (for each separate training process) on the test

set, choosing the model that gives the best f1-score on the testing set from which we
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choose the optimal set of hyperparameters. From this, we then train 5 models with

the optimal hyperparameter settings and vary the number of training processes. We

then evaluate each of these on our testing set and report the mean metrics (over all

training processes) in table 3.2.

Table 3.2: Comparison of kinase inhibitor classification between the MPNN method
and Model 1 from the feature selection method.

n processors Class Prec. Recall F1-score Class Prec. Recall F1

1 0 0.99 1.00 1.00 1 0.93 0.68 0.79
2 0 1.00 1.00 1.00 1 0.88 0.88 0.88
3 0 0.99 1.00 1.00 1 0.92 0.78 0.84
4 0 1.00 1.00 1.00 1 0.90 0.84 0.87
5 0 1.00 1.00 1.00 1 0.91 0.85 0.88

Model 1 0 1.00 1.00 1.00 1 0.83 0.92 0.87

Figure 3.3: Mean precision score on validation for each number of training processes,
per epoch

31



www.manaraa.com

Figure 3.4: Mean recall score on validation set for each number of training processes,
per epoch

Figure 3.5: Mean f1-score on validation set for each number of training processes, per
epoch

3.5 Discussion

Our results show that the MPNN model can be used to classify the kinase inhibitors

with performance on par with our previous method that uses pre-computed features.

It can also be observed that the use of at least 2 training processes appears to result
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in a significant improvement in recall and f1 scores on the test set. This improvement

is also achieved earlier in the network training, as seen in figures 3.3, 3.4, and 3.5.

However, it does appear that beyond the use of 2 training processes, the improvements

are not as substantial. This may be related to the number of model parameters and

the sparsity of the updates from each of the training processes.

Copyright c© Derek Jones, 2018.
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Chapter 4

Conclusions and Future Directions

In this thesis, we have presented two approaches for the modeling of interactions

between drug-like molecules and protein kinase targets. Both of these approaches

prioritize the task of extracting information directly from the available data rather

than relying on expert knowledge. Additionally, these approaches are distributed in

nature, allowing them to scale to the available resources, however large or small those

may be. Most importantly, we have shown that these approaches are robust to the

class imbalance within our dataset, giving confidence that these algorithms would be

successful in identifying active compounds which could potentially lead to adverse

reactions.

Future directions for research include the modeling of more complex tasks such

as the binding affinities between the protein targets and drug molecules. In addi-

tion to this, it would also be interesting to learn multi-output models that quantify

the uncertainty associated with each prediction, especially interesting in the case of

regression models. Further work with larger datasets and distributed optimization

algorithms would be another worthwhile direction to pursue.
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